Building a Regenerative Agricultural System using No-Till Permanent Raised Beds

Jennifer Wilhelm

What is Regenerative Agriculture Anyway?

"Regenerative Agriculture describes farming and grazing practices that, among other benefits, reverse climate change by rebuilding soil organic matter and restoring degraded soil biodiversity – resulting in both carbon drawdown and improving the water cycle."

Source: Regeneration International

https://regenerationinternational.org/why-regenerative-agriculture/

Regenerative Management Strategies

- Planting perennial crops
- Keeping soil covered
- No-till and low till
- Composting
- Ecological Silvopasture
- Ecological Aquaculture
- Efficient water use (e.g., drip irrigation)
- Efficient organic fertilizer use

NESARE Research Objectives

Explore if/how our no-till permanent raised bed system works to

- Reduce weed pressure
- Improve soil health
- Increase production potential (crop yield)

Weed Management

- Herbicides
 - Herbicide resistance
- Tilling
 - Compromise soil health and disturb weed seed bank, requires equipment
- Plasticulture
 - Costly, requires special equipment, and creates disposable waste products

*Create annual expenses and require hours of on farm labor

*Crops outcompeted by weeds = lost income for the farmer

Soil Health

- Increase soil organic matter (SOM) formation
 - Can be used on "marginal" lands
- Increasing soil water holding capacity
- Improving soil carbon storage
- Reducing leaching and runoff

Production Potential (Yield)

- Not spatially constrained to fit farm equipment
 - Can plant more intensively
- Lower barrier to entry
 - Decreased long-term capital inputs

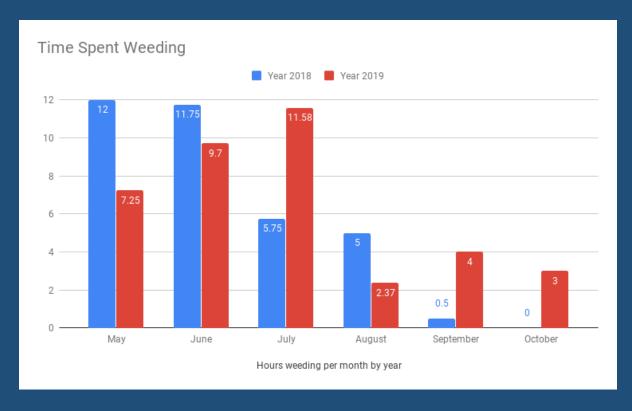
No-till Permanent Raised Beds

Bed

(Row)

Walkway (Inter-row)

Other Passive Weed Management Strategies



Sillage Tarps

The UV-treated polyethylene tarp we use for clearing our permanent beds of crop residues while keeping weeds in check are silage tarps. Jean-Martin Fortier The Market Gardener

Research Results: Weed Management

Results indicate that our farm has high weed diversity, but low abundance.

Annual weed pressure varies (2018 mast year for maples).

Comprehensive Assessment of Soil Health

Research Results: Soil Health [Prom the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cals.corne

Group	Indicator	Value	Rating	Constraints
physical	Surface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Subsurface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Aggregate Stability	64.7	85	
biological	Organic Matter	3.0	88	
biological	Soil Respiration	0.9	87	
biological	Active Carbon	443	48	
chemical	Soil pH	5.6	19	Low pH: Toxicity, Nutrient Availability (note exception for acid loving crop species)
chemical	Extractable Phosphorus	9.0	100	
chemical	Extractable Potassium	54.9	80	
chemical	Minor Elements Mg: 37.8 / Fe: 6.6 / Mn: 3.7 / Zn: 24.3		100	

Group	Indicator	Value	Rating	Constraints
physical	Surface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Subsurface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Aggregate Stability	73.2	92	
biological	Organic Matter	7.9	100	
biological	Soil Respiration	0.9	87	
biological	Active Carbon	1116	99	
chemical	Soil pH	6.5	100	
chemical	Extractable Phosphorus	19.8	100	
chemical	Extractable Potassium	118.9	100	
chemical	Minor Elements Mg: 315.7 / Fe: 6.1 / Mn: 4.5 / Zn: 5.4		100	

Overall Quality Score: 97 / Optimal

Control samples (from surrounding sod) were better than expected, but low Active Carbon and low pH compared to soil from within PRB system.

Research Results: Production Potential

No significant difference between treatments (p=0.941), which indicates yields are steady over time (one year in after system is established)

Managing a No-till Permanent Raised Bed System

- Without structure, soil can shift
 - You may need to rake up the sides of you beds every year to reshape
- You may need to add more hardwood chips to walkways every few years
- You may need to add more compost (as amendment) every few years
 - I suggest getting your soil tested to make informed decisions
- Snip crops with deep root structure to reduce chance of pulling up weed seeds from below (e.g., tomatoes, eggplant, peppers, sunflowers, etc.)

No-till Permanent Raised Bed System: Challenges

- Upfront costs
 - Purchasing hardwood chips and compost
- Compost can have trash in it
- Potential for compaction
- Takes one year to establish productive growing spaces
- Prime habitat for moles (can be bad) and voles (can be good)
 - Both aerate the soil

No-till Permanent Raised Bed System: Benefits

- Reduced weed pressure compared to traditional organic agriculture
 - Eliminates need for plasticulture (plastic mulch)
 - Drastically reduces labor costs for weeding
 - Eliminates costly mechanical equipment
- Rapidly builds soil organic matter
- Builds healthy soil structure/ecosystem
- Sequesters carbon

Alternative PRB system for prime soil

Year 1

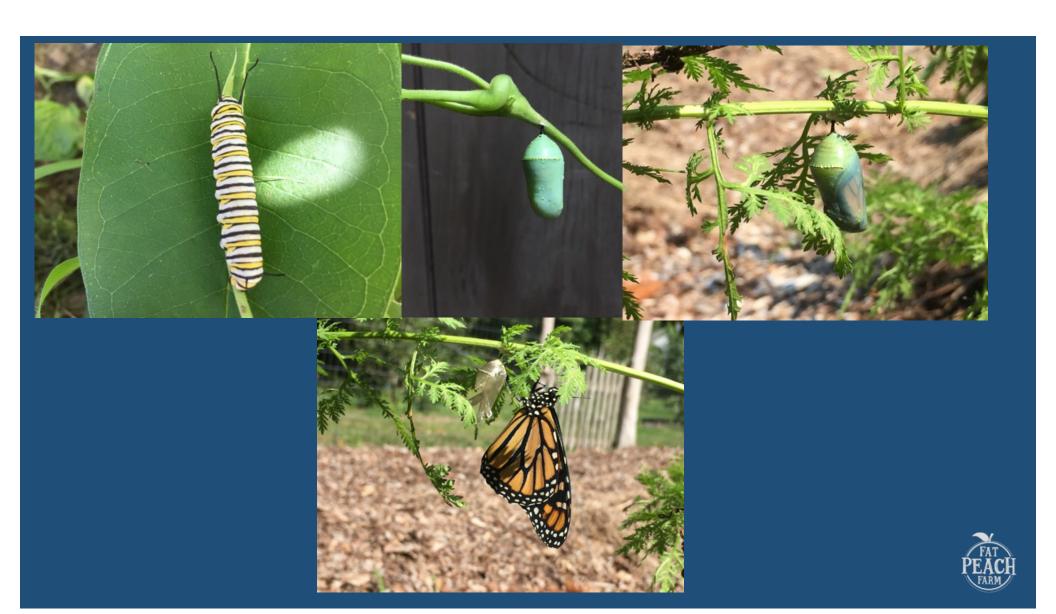
- Till area
- Smother with silage tarp
- Form beds with tiller
- Cover beds with 2-4 inches of weed seed-free compost
- Seed beds with cover crop for one year
- Cover walkways with hardwood chips

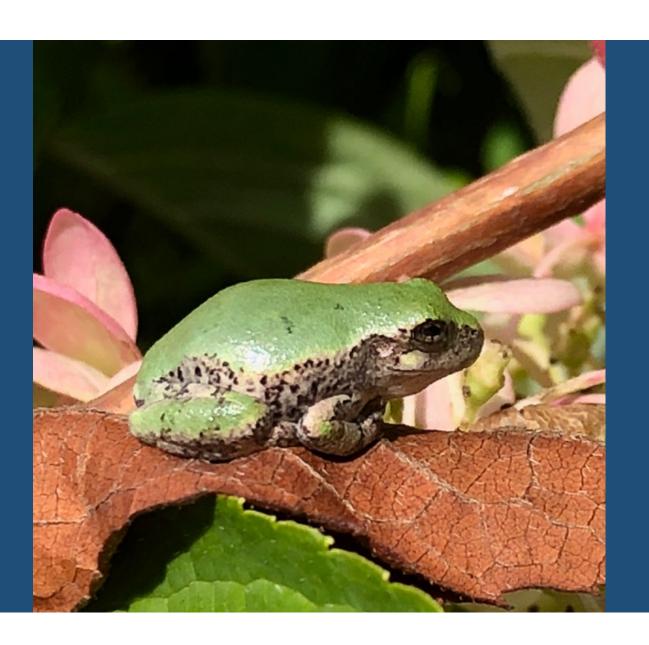
Year 2

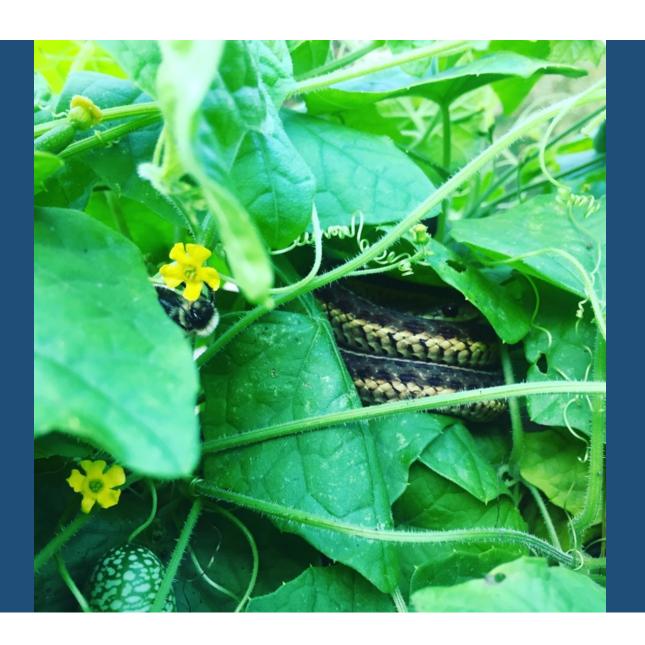
• Prep beds and plant cash crops

Fat Peach Farm

2013 2017







Questions?

